Вы уже знаете о супер способностях современного учителя?

- ✓ Тратить минимум сил на подготовку и проведение уроков.
- ✓ Быстро и объективно проверять знания учащихся.
- ✓ Сделать изучение нового материала максимально понятным.
- ✓ Избавить себя от подбора заданий и их проверки после уроков.
- ✓ Наладить дисциплину на своих уроках.
- √ Получить возможность работать творчески.

План-конспект

мастер-класса по алгебре и началам анализа в 10 классе Тема: «Решение простейших тригонометрических уравнений вида $\sin x = a$, $\cos x = a$ ».

Цели урока:

Образовательные: Актуализировать знания учащихся по теме: *«Решение простейших тригонометрических уравнений вида sin x = a, \cos x = a» и закрепить их применение при решении задач вариантов E\Gamma \ni;*

Повторить, углубить, обобщить и систематизировать приобретенные знания по данной теме для дальнейшего использования при решении более сложных тригонометрических уравнений.

Развивающие: Содействовать развитию у учащихся мыслительных функций: умение анализировать, сравнивать, применять полученные знания в практической деятельности

Формировать и развивать общеучебные умения и навыки: обобщение, поиск способов решения;

Отрабатывать навыки самооценивания знаний и умений, выбора задания, соответствующего их уровню развития.

Воспитательные: Вырабатывать внимание, самостоятельность при работе на уроке; Способствовать формированию активности и настойчивости, максимальной работоспособности;

Развивать интерес к урокам математики.

Тип урока: урок обобщения и систематизации знаний.

Оборудование: компьютер и мультимедийный проектор.

Технологии: технология дифференцированного обучения; технология применения средств ИКТ; восприятие «на слух» (без элементов визуализации)

Структура урока:

1. Вводно-мотивационная часть.

1.1. Организационный момент (подготовить учащихся к работе на уроке; взаимное приветствие; проверка подготовленности учащихся к уроку, рабочее место, внешний вид, организация внимания).

2. Основная часть урока.

- 2.1. Устная работа.
- 2.2. Проверка усвоения знаний, умений и навыков при решении простейших тригонометрических уравнений (чередование фронтальной и индивидуальной форм работы с последующей проверкой задания).
- 2.3. Устная работа с классом.

3. Рефлексивно-оценочная часть урока.

- 3.1. Подведение итогов урока.
- 3.2. Обсуждение результатов индивидуальной работы.
- 3.3. Информация о домашнем задании.

Ход урока:

Домашнее задание:

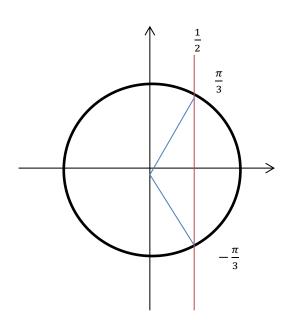
1.
$$\cos 2x = \frac{\sqrt{2}}{2}$$

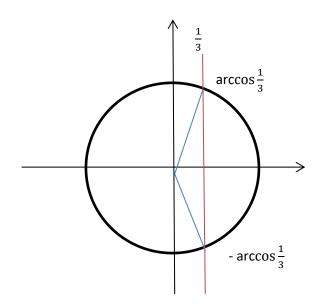
2.
$$5\sin x = 6^{2}$$

3.
$$2\cos{(-\frac{x}{2})} = -\sqrt{2}$$

4. В 21 №13 (ЕГЭ профиль)

Устная работа:


- 1. Дайте определение sin α; cos α (на единичной окружности)
- 2. Ограничения $\sin \alpha$; $\cos \alpha$?
- 3. Какие знаки имеют $\sin \alpha$; $\cos \alpha$ в координатных четвертях?
- 4. Что вы знаете о чётности и нечётности, известных вам, тригонометрических функций?
- 5. Вспомним таблицу значений $\sin \alpha$; $\cos \alpha$ в 1 координатной четверти

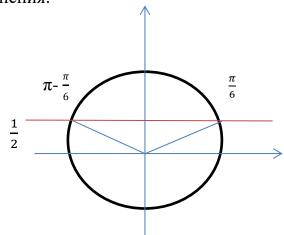

α°	0°	30°	45°	60°	90°	120°	135°	150°	180°	210°	225°	240°	270°	300°	315°	330°	360°
α	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π	$\frac{7\pi}{6}$	$\frac{5\pi}{4}$	$\frac{4\pi}{3}$	$\frac{3\pi}{2}$	$\frac{5\pi}{3}$	$\frac{7\pi}{4}$	$\frac{11\pi}{6}$	2π
Sinα	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{1}{2}$	0
Cos a	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{1}{2}$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
tgα	0	$\frac{1}{\sqrt{3}}$	1	√3	-	- √3	-1	$-\frac{1}{\sqrt{3}}$	0	$\frac{1}{\sqrt{3}}$	1	√3	-	- √3	-1	$-\frac{1}{\sqrt{3}}$	0
ctga	-	$\sqrt{3}$	1	$\frac{1}{\sqrt{3}}$	0	$-\frac{1}{\sqrt{3}}$	-1	$-\sqrt{3}$	-	$\sqrt{3}$	1	$\frac{1}{\sqrt{3}}$	0	$-\frac{1}{\sqrt{3}}$	-1	$-\sqrt{3}$	-

Двое учащихся работают по карточкам у доски. Решите уравнения:

$$\cos x = \frac{1}{2}$$
;

$$\cos x = \frac{1}{3};$$

Otbet: $x = \frac{\pi}{3} + 2\pi n$, $n \in \mathbb{Z}$

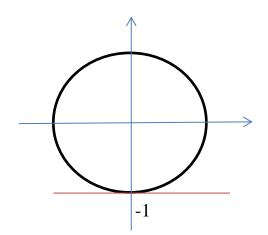

$$x = -\frac{\pi}{3} + 2\pi k$$
, $k \in \mathbb{Z}$

Otbet: $x = \arccos \frac{1}{3} + 2\pi n$, $n \in \mathbb{Z}$

$$x = -\arccos\frac{1}{3} + 2\pi k$$
, $k \in \mathbb{Z}$

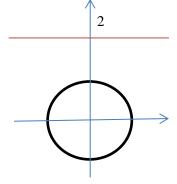
На доске учитель решает уравнения:

1.
$$\sin x = \frac{1}{2}$$

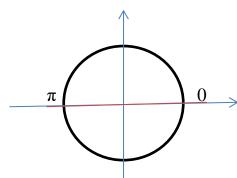


Otbet: $x = \frac{\pi}{6} + 2\pi n$, $n \in \mathbb{Z}$

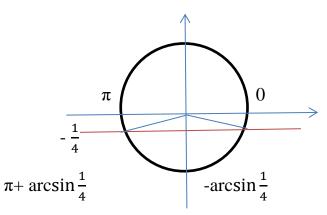
$$x = \frac{5\pi}{6} + 2\pi k , k\epsilon Z$$


2.
$$\sin x = -1$$

Otbet:
$$x = -\frac{\pi}{2} + 2\pi n$$
, $n \in \mathbb{Z}$



Ответ: решений нет



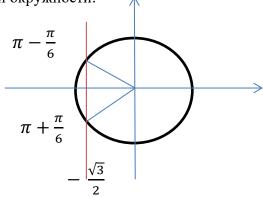
4. $\sin x = 0$

Ответ: $x = \pi n$, $n \in \mathbb{Z}$

5.
$$\sin x = -\frac{1}{4}$$

Otbet:
$$x = \pi + \arcsin \frac{1}{4} + 2\pi n$$
, $n \in \mathbb{Z}$

$$x = -\arcsin \frac{1}{4} + 2\pi k, k \in \mathbb{Z}$$

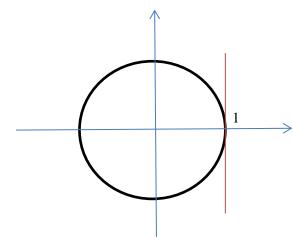

Вопрос: А что означает приставка arc?

Название обратной тригонометрической функции образуется от названия соответствующей ей тригонометрической функции добавлением **приставки** «арк-» (от лат. arcus — дуга). Это связано с тем, что геометрически значение обратной тригонометрической функции можно связать с длиной дуги единичной окружности (или углом, стягивающим эту дугу), соответствующей тому или иному отрезку. (ru.wikipedia.org)

Самостоятельная работа в тетрадях (без вариантов)

Решить уравнение, изобразить решение на единичной окружности:

1.
$$\cos x = -\frac{\sqrt{3}}{2}$$
;

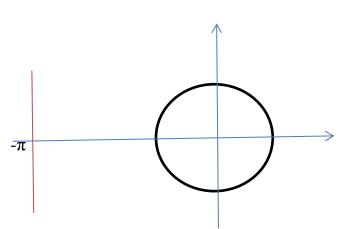


Ответ:

$$x = \frac{5\pi}{6} + 2\pi n$$
, $n \in \mathbb{Z}$

$$x = \frac{7\pi}{6} + 2\pi k$$
, $k \in \mathbb{Z}$

2.
$$\cos x = 1$$
;

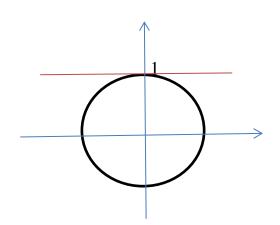

Ответ: $x=2\pi n$, $n \in \mathbb{Z}$

3.
$$\cos x = -\pi$$
;

$$\pi \approx 3,14$$
 - const

Ответ: решений нет

4.
$$\cos x = 0$$


Otbet: $x = \frac{\pi}{2} + \pi n$, $n \in \mathbb{Z}$

Уравнения sin x = a, cos x = a (сложный аргумент)

1.
$$\sin(\frac{1}{5}x) = 1$$

$$\frac{1}{5}x = \frac{\pi}{2} + 2\pi n, \ n \in \mathbb{Z}$$

Otbet:
$$x = \frac{5\pi}{2} + 10\pi n$$
, $n \in \mathbb{Z}$

2.
$$2 \sin (x + \pi/6) - \sqrt{3} = 0$$
;

$$\sin (x + \pi/6) = \frac{\sqrt{3}}{2}$$

$$x + \frac{\pi}{6} = \frac{\pi}{3} + 2\pi n$$

$$x + \frac{\pi}{6} = \pi - \frac{\pi}{3} + 2\pi k$$

$$\mathbf{x} = -\frac{\pi}{6} + \frac{\pi}{3} + 2\pi \mathbf{n}$$

$$x + \frac{\pi}{6} = \frac{2\pi}{3} + 2\pi k$$

$$\mathbf{x} = \frac{\pi}{6} + 2\pi \mathbf{n}, \ \mathbf{n} \in \mathbb{Z}$$

$$x = \frac{\pi}{2} + 2\pi k, k \in \mathbb{Z}$$

Otbet:
$$\mathbf{x} = \frac{\pi}{6} + 2\pi \mathbf{n}, \ \mathbf{n} \in \mathbb{Z}$$

$$x = \frac{\pi}{2} + 2\pi k, k \in \mathbb{Z}$$

Формулы приведения

Функция / угол в рад.	π/2 – α	π/2 + α	π – α	π + α	3π/2 – α	3π/2 + α	2π – α	2π + α
sin	cos a	cos α	sin α	– sin α	– cos α	– cos α	– sin α	sin α
cos	sin α	– sin α	– cos α	– cos α	– sin α	sin α	cos a	cos a
tg	ctg a	– ctg α	– tg α	tg α	ctg a	– ctg α	– tg α	tg α
ctg	tg α	– tg α	– ctg α	ctg a	tg α	– tg α	– ctg α	ctg α
Функция / угол в °	90° – α	90° + α	180° – α	180° + α	270° – α	270° + α	360° – α	360° + α

Вопрос: Как работает эта таблица?

Преобразуйте выражения:

$$\sin (\pi/2 - \alpha) = \cos \alpha$$

$$\sin (\pi/2 - \alpha) = \sin (3\pi/2 - \alpha) = -\cos \alpha$$

$$\sin (\pi - \alpha) = \sin \alpha$$

$$\cos (\alpha - 180^{\circ}) = \cos(180^{\circ} - \alpha) = -\cos \alpha$$

$$\sin (3\pi/2 - \alpha) = -\cos \alpha$$

$$\cos (\pi/2 + \alpha) = -\sin \alpha$$

$$\sin (3\pi/2 + \alpha) = \sin (\pi/2 + \alpha) = -\sin \alpha$$

$$\cos (3\pi/2 + \alpha) = \sin \alpha$$

$$\cos (\pi/2 + \alpha) = \sin \alpha$$

Подведение итогов урока.

- **1.** Решение каких уравнений сегодня мы пытались изобразить на единичной окружности?
- 2. Что означает приставка «arc»?
- 3. Как работает таблица «Формулы приведения»
- 4. Комментарий оценивания